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Equations for the instantaneous velocity and temperature fluctuations in a turbulent 
flow are used to assess the effect of a fluctuating convection velocity on Taylor’s 
hypothesis when certain simplifying assumptions are made. The probability density 
function of the velocity or temperature derivative is calculated, with an assumed 
Gaussian probability density function of the spatial derivative, for two cases of the 
fluctuating convection velocity. I n  the first case, the convection velocity is the instan- 
taneous longitudinal velocity, assumed to be Gaussian. I n  the second, the magnitude 
of the convection velocity is equal to that of the total velocity vector whose components 
are Gaussian. The calculated probability density function shows a significant depar- 
ture, in both cases, from the Gaussian distribution for relatively large amplitudes of 
the derivative, a t  only moderate values of the turbulence intensity level. The fluctuat- 
ing convection velocity affects normalized moments of measured velocity and tem- 
perature derivatives in the atmospheric surface layer. The effect increases with 
increasing order of the moment and is more significant for odd-order moments than 
even-order moments. 

1. Introduction 

preted as convected streamwise spatial fluctuations. It asserts that  
The frozen field or Taylor’s hypothesis allows temporal fluctuations to be inter - 

U i ( X ,  t )  = U i ( X  - UT, t -k 7) 

for not too large values of the time delay r .  Two important applications of this appro- 
ximation (see Townsend 1976) are the calculation of one-dimensional spectrum func- 
tions from measured frequency spectra and the determination of mean values of 
functions of spatial turbulent velocity (or scalar) gradients from measured temporal 
derivative fluctuations via the often used relation 

a a _ -  at - - 11,- ax, 
where U, is the mean velocity in the x1 direction. Even when the convection velocity 
of the large-scale velocity pattern differs considerably from [TI, i t  is thought that (1) 
is reasonably accurate, at least when the turbulence intensity g, ,J l i  is small, as small 
eddies are convected with the mean velocity of the fluid. 
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Fisher & Davies ( 1  964) suggested several mechanisms which can prevent the direct 
interpretation of spectra as space spectra by Taylor's hypothesis. Lumley (1  965) 
showed that only one of these mechanisms, namely the convection velocity fluctuation, 
remained important a t  high frequencies. Lumley proposed a model in which the 
characteristic function of convection velocity fluctuation was represented by the first 
two terms of its series expansion. The model led to a formula for correcting the high- 
frequency part of the one-dimensional streamwise velocity spectrum. Wyngaard & 
Clifford ( 1  977) considered a Gaussian convection velocity fluctuation and extended 
Lumley's model? to spectra of lateral velocity and scalar fluctuations. They found 
that, while the inertial subrange spectrum was not significantly affected, larger wave- 
numbers could suffer serious spectral distortion. Champagne (1978) obtained an 
analytical solution to Lumley's spectral correction formula and found that, for jet 
data (R, = 626), the measured spectrum overestimates the correct spectrum by 
200 % a t  frequencies near the Kolmogorov frequency. This sort of error underlines 
the need to correct the high-frequency part of the spectrum before an assessment can 
be made, as was done by Champagne, of the effect of turbulence Reynolds number 
R, ( = ru,h/v, where h is the Taylor microscale) on the spectral shape. As a result of 
Kolmogorov's third hypothesis the shape of the probability density function of 
auliix or a8/ax (8 is the temperature fluctuation) should exhibit a significant depen- 
dence (e.g. Wyngaard & Pao 1972) on R,. It would therefore seem important to 
evaluate the possible effect of a fluctuating convection velocity on the shape of the 
probability density function of the spatial velocity or temperature derivative. No 
such direct evaluation appears to have been made, but relations between moments 
of ul,t ( = &,/at) and ul,, ( = au,/ax,) have been obtained by Lumley, Wyngaard & Pao 
and Wyngaard & Clifford via the corrected spectrum. These relations are consistent 
with those obtained by Heskestad (1965) from a consideration of the Navier-Stokes 
equations under certain simplifying assumptions. (Both the spectral model of Lumley 
and the approach of Heskestad assume that the convection velocity fluctuation is 
independent of the convected small-scale structure.) Wyngaard & Tennekes ( 1  970) 
found that, while second-order and third-order moments of (ul,t/Ul) in a curved mixing 
layer overestimated the values of?,, and by about 15 and 21 yo respectively 

(for gu,/Ul v gJU1 N cru3/Ul 2: 0.17), the skewness (=  q.t/q,f) and flatness factor 
( =  u!,t/uTt) of ul,t agreed, to within 2 %, with the skewness and flatness factor of 
ul,, obtained from simplified relations using either the Lumley or Heskestad approach. 

In  the present paper, we concentrate on evaluating the shape of the probability 
density function of a.t (a: stands for either u1 or 8) when the probability density function 
of a,, is assumed to be Gaussian. Two cases are considered in 3 3 for the probability 
density function of the convection velocity. I n  the first, the fluctuating convection 
velocity U, + u1 is assumed to be Gaussian while, in the second, the convection velocity 
is assumed equal to (v,v,)i  where the fluctuations v, = 6,, U, + u, are Gaussian. 
Measured probability density functions of U y l  a,t in the atmospheric surface layer are 
compared in 9 4 with those of ( lJ, + ul)-l a,t to  ascertain, from an experimental view- 
point, the influence of a fluctuating convection velocity on the probability density 

- 

t Lumley's model was also extended by Chock (1978) to predict the effect of a fluctuating 
convection velocity on the eddy convection velocity for the high-frequency region of ve1ocit.v and 
scalar spectra. 
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We show that the experimental trend is consistent with an alternative function of 
approach where a,t and vl are assumed to be independent. 

2. Analytical considerations 
The equation for the velocity fluctuation u i  may be obtained by subtracting the 

Reynolds equation from the Navier-Stokes equation and may be written as (e.g. 
Lumley & Panofsky 1964) 

(2)  

where repeated indices are summed, p is the kinematic pressure fluctuation and it has 
been assumed that there are no mean-flow velocity components in the xz and z3 
directions. The equation for 0 (obtained by subtracting the mean heat-transfer rate 
equation from the instantaneous heat-transfer equation) may be written as 

ui ,t = - ui, 1 u, - ui , j u j - si, u, . j u j - ui , j u j - p , i i 1'U. % , I 1  ' . ) 

- 
e,t = - e,, u, - uje,  - u j  q + U j e , j  + mij) (3)  

where 9 is the thermal diffusivity and T is the mean temperature. The last term on 
the right-hand side of (2) or (3)  may be neglected for Reynolds or PBclet numbers 
that are sufficiently large (such as those found in the atmospheric surface layer). 
Using an order-of-magnitude argument, it may be shown, for sufficiently large 
Reynolds and PBclet numbers, that the third term may be neglected vis-8-vis the 
first term while the correlation term is zero if independence between large and smafl 
scales is invoked (e.g. Heskestad 1965). The third and fourth terms are strictly zero 
for homogeneous turbulence. It follows from the previous remarks that (3) can be 
reduced to 

while (2) becomes 

only when the pressure term is ignored. In  ignoring this term, Heskestad used 
Batchelor's (1951) estimate, for an isotropic field, of the ratio of a component of the 
mean-square pressure gradient to a typical mean-square inertia term, i.e. 

e,t = - e,l u, - u p j  (4) 

Ui,t = - u ~ , l u l - u j u i , i  ( 5 )  

For R, = 5000, typical of the atmospheric boundary layer and sufficiently large 
to ignore the viscous term in ( 2 )  and to justify the assumption of isotropy, this ratio 
is 0-016. The ratio of the pressure gradient to  an inertia term in (2) should be about 
0.13 (for R, = 5000), which seems sufficiently small for the effect of pressure gradient 
to be considered negligible. As no pressure term appears in (3) ,  Taylor's hypothesis 
( 1 )  may be thought to be a better approximation to (4) than to ( 5 ) .  Strictly, (4) and 
( 5 )  reduce to (1) for unusually small turbulence intensities. 

The relations between moments of 6,t and e,, may be readily written (corresponding 
relations for velocity derivatives have already been given by Heskestad and others) 
when the spatial temperature gradient 6,i is assumed to be isotropic 

7-2 
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or, equivalently, 
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- - -  3 = C( u;+ u; + u; + u;) 
- -  

(since O,iO,j = 0,; Jij by isotropy), 
- 3= - ( 3 u ; f U ; ) U 1 ~ =  0, 

Equation (6) is in agreement with that given by Champagne et al. (1977) and Wyngaard 
& Clifford ( 1  978). If the Reynolds number is sufficiently large, the assumption that 
O,i is isotropic may be relaxed to an assumption of local isotropy since most of the 
contribution to the O,i spectrum should then occur a t  relatively large wavenumbers. 

For crul/Ul 2: vU2/ U12: .;,/Ul = 0.17, (6) and (8) indicate tha tF l  and 0Fare over- 
estimated by about 9 and 18 yo respectively. However, the flatness factor of 0,, 
correctly predicts the flatness factor of 0,1, which is essentially in agreement with the 
velocity derivative result of Wyngaard & Tennekes (1970). 

3. Calculated probability density functions of O,, 

ignored, (4) and ( 5 )  may be further reduced to 
With the oversimplifying assumption that velocity fluctuations u2 and u3 are 

0,t = - 0,lVl + Ul) ,  (9) 

Ul,t = -u,l(Ul+ul). (10) 

If it is also assumed that both u1 and a,1 are Gaussian, the probability density func- 
tion (p.d.f.) of a,t may simply be obtained as the p.d.f. of the product of two random 
Gaussian variables. While the assumption of a Gaussian p.d.f. for u1 is, usually, not 
unreasonable, the assumptions that 0,1 and ul,l are Gaussian are more difficult to 
justify. We cannot readily resort to experimental data for a,l as the determination 
of from the difference between two sensors (velocity or temperature) separated 
in the x1 direction is no doubt affected by the possibility of flow interference when the 
separation between sensors is small. 

Batchelor (1953) observed that the skewness of the difference u;-ul, where 
u; = ul (r  + r l ) ,  measured by Stewart (1961) in grid turbulence, is not inconsistent, 
when rl approaches zero, with the measured skewness of u ~ , ~ .  It was suggested that 
this evidence supported Taylor’s hypothesis or the approximation that variations in 
velocity at a point fixed relative to the grid are the same as if the turbulence were 
simply convected by the stream. When r1 -+ 0, u; -ul should have a probability 
distribution governed by the Navier-Stokes equation. Batchelor argues that ‘eddies 
smaller than a certain size owe their existence entirely to the non-linear transfer 
down the sFectrum, and the smaller the eddy the more prolonged, so to speak, has 
been the influence of the non-linear terms’. The p.d.f. of u;-ul should therefore 
depart furthest from a normal distribution at  very small values of rl. It is well estab- 

-1ished that, for locally isotropic turbulence, the skewness of ul,l cannot be zero as it 
appears as a factor for the production term in the equation for the mean squared 
fluctuating vorticity. The p.d.f. of ul,t measured by Townsend (see Batchelor 1953, 
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p. 173) in grid turbulence is consistent with the expected skewness of u ~ , ~ .  Deviations 
of this p.d.f. from the Gaussian distribution are not significant however, probably 
because of the relatively low Reynolds number of the experiment. 

Local isotropy requires that odd-order moments of 8,1 are zero, consistent with 
the assumption of a Gaussian probability density function. Measured non-zero values 
of 6 cannot, in any case (e.g. Sreenivasan & Antonia 1977) unequivocally be inter- 
preted as a violation of local isotropy because of the likely contribution to ?$ by the 
large-scale structure. The assumption of a symmetrical p.d.f. for a,1 would, in principle, 
seem more adequate for 0,1 than for u ~ , ~ .  Experimental evidence ( 5  4) indicates, how- 
ever, that normalized high even-order moments of 0,1 are much larger, especially a t  
large Reynolds numbers, than corresponding moments of u ~ , ~ ,  so that the assumption 
of a Gaussian p.d.f. for 0,1 is unlikely to be adequate. In  particular, the assertion by 
Townsend (1959) that the experimental evidence suggests that the departure from 
normality of 0,1 may not be large cannot be reconciled with our previous observations. 

With the additional assumption of independence between a,l and vl and working 
in terms of the normalized variables 

where 6 = Ul/crul is the reciprocal of the turbulence intensity. It follows that the odd- 
order moments of x vanish while the even-order moments (except s) depend on the 
turbulence intensity level. For instance, the first four even-order moments are 

_ 
x2 = 1, 

- 105( 105 + 420E2 + 210g4 + 28c6 + c8) 
- 

(1 + (”4 
Note that F n  varies from @ to (s)2 as t varies from oc) to zero, where x 5  is the 
corresponding Gaussian value so that, for moderate turbulence intensity levels, the 
departure from the Gaussian values of &is significant. For a 10 % turbulence level 
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X ~ ~ / X ~  is 0.04, 0.12 and 0.25 for n = 2, 3 and 4. This also reflects itself in the shape of 
the p.d.f. of x for moderate values of 6 as seen below. 

Also, it  is easy to establish that the p.d.f. of O,t or ul,t (9 and 10) will not deviate 
significantly from the p.d.f. of O,, or u,,, when crul < U,. The following perturbation 
scheme 

O,, = €0::) + 0 ( e 2 ) ,  

-- 

w, = u, + eu, + 0(e2), 

e,t = €e!y + ew;) + 0 ( ~ 3 ) ,  

0,‘:) = U,s!y, 0:;) = u l q ,  . . . 
where e = O(a,,/U,), suggests that 

while 0:;) follows the distribution of 0:;) (=  (0,1), 8:;) follows KO,? the zeroth-order 
modified Bessel function of the second kind, if u1 and 0:;) are Gaussianly distributed. 
The probability density function of 6,t is then given by 

Pe,, = PD,scl/ *PPh2d:’ 

where p denotes the p.d.f. and * denotes convolution. The fluctuation u1 only affects 
pe,, through terms of O(e2) .  When 0,, and (U, + u,) are Gaussian, the convolution should 
follow closely a Gaussian p.d.f. since KO is mainly concentrated a t  the origin. The 
addition of the u2 and us terms in (9) and (10) should not affect this result. 

To quantify the effect of a fluctuating convection velocity on the p.d.f. of a,t, it 
seems worthwhile to calculate pa,t with the, admittedly crude, assumption that pa, ,  
is Gaussian. With the further assumption that the Gaussian fluctuations u1 and a,, 
are statistically independent, pa , ,  is written as 

with 

and 

It is not difficult to show that (12) reduces to 

5 2 k  

*a’t = Tgu1 ga,l k=O x @pkKb( l7 l ) ,  
where 

7 = -  “, t  

0;t1 g a ,  1 ’ 
and K k ( X )  is the modified Bessel function of the second kind. 

This may be rewritten in normalized form as 

7 Proof that the distribution of the product of two Gaussian variables follows KO may be found 
in Antonia & Luxton (1971) and Lu & Willmarth (1972). 
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FIGURE 1 .  Probability density function of x calculated from (16) for 6 = 0, 2.0, 3.0 and 4.72. 
U ~ P , ~ , , ;  O,pe,,; , Gaussian. 

where z = y/( l  +c2)i. Near y = 0, y k K k ( q )  2: ( k -  l)! 2k-1 (k =+ 0 )  so that 

where y is the Euler constant. When U, = 0, (15) simplifies to p ,  = n--lKo(lyl), a 
result which has been used in the literature (e.g. Antonia & Atkinson 1973) for com- 
parison with measurements of the p.d.f. of uluz (or u26). 

Distributions of p z  for several values of E, including 6 = 0, are shown in figures 1 
and 2. For comparison, also shown in these figures are the Gaussian distribution and 
experimental values of pa,, obtained in the atmospheric surface layer (details are 
given in § 4). While p ,  deviates only slightly from the Gaussian distribution at  large 
5, the deviation at  small values of c becomes significant as x increases. For 6 = 3, 
typical of the turbulence intensity level found on the axis of a circular jet, p ( x )  exceeds 
the Gaussian value by almost one order of magnitude at  four standard deviations. 
The experimental data (only positive values of u ~ , ~  and 6,t are shown in figure 1)  



200 

0.7 

0.6 

0.5 

0.4 
h 

v Y 

4 

0.3 

0.2 

0.1 

0 

R.  A. Antonia, N .  Phan-Thien and A. J .  Chambers 

X 

FIGURE 2. Probability density function of z calculated from (16) for E = 0 and 4.72 
showing detail for Irl < 3.5. U, P W , ~ ;  0, Pe,j  , Gaussian. 

correspond to 6 = 4.72 and are clearly not well represented by pz (6 = 4.72). The poor 
agreement may be interpreted to reflect the inadequacy of (14) and of the assumed 
independence of p,, and pa 1. It is not difficult to show that if the p.d.f. of a,l exhibits 
a spiky structure, this stGucture will be preserved in the p.d.f. of a,t. Supposepavl 
can be represented by a delta sequence 8, (Greenberg 1971): 

Pa,l(a,l) = Jk(a.1)) 

then the p.d.f. of a,t is given by (12) 

Since, for any arbitrary h(w), 

= Im 8(w) h(w)dw = h(O), 
-a 

P ~ , ~ ( W ;  k) is also a delta sequence and the spiky structure in pa,l is also present in pa , t .  
This, in addition to the experimental evidence, suggests that pa,l may be better 
presented by a spiky p.d.f. KO may be, perhaps speculatively, a better representation 
of pa, 1, or at  least pe,  1, than the normal distribution. 

Townsend (1959) calculated ps,, with O,t assumed to be given by 
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where q = (vivi)* (no mean flow 'velocity was considered so that vi and ui are identical) 
and fluctuations vi and O,, were assumed to be Gaussian and independent. This 
calculation can be extended to the case where the flow has a non-zero mean velocity 
with a Gaussian joint p.d.f. of vi given by 

The p.d.f. of q = (vf + u; + u;)* is then given by 

p ,  = (:)' 6, sinh p3) exp { - -) 
When U, = 0, this reduces to the Maxwellian distribution 

considered by Townsend ( 1959). 
The p.d.f. of a,t = - qa,, may be written as, when pa,, is Gaussian and pq is given by 

(1% 

PLQ = (19) 

or, equivalently, in the normalized form 

where 7 and 6 are now defined by 

5 = w g q ,  7 = ~ , t / f l q % ,  

and x = q / ( l +  c2)+ is the normalized variable. Note that when U, = 0, (20) reduces to 

which is identical to the expression given by Townsend (for O,t 2 0) 

where 

is the first-order Hankel function of the first kind. 
Also, since 

it is easily verified that ( 16) and (20) satisfy the normalization conditions 

/p,dx = 1 and / x2pxdx  = 1. 

t While values given in table 4 of Townsend (1959, appendix), are correct, those shown in 
figure 24 are incorrect. 
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FIUURE 3. Probability density function of 2 calculated from (20) for 6 = 0, 2.0, 3.0 and 4.0. 
0, P U ~ , , ;  O9po,,; -- - , Gaussian. 

Distributions of p x ,  given by (20), are shown in figure 3 for different values of 
E = U1/crq. (The experimental values ofpul,* andPo,* correspond to 6 N 3). Deviations of 
p x  from the Gaussian curve are qualitatively similar to those of figure 1 for decreasing 6. 
The agreement, in figure 3, between experimental values and (20) is, however, better 
than the corresponding agreement in figure 1. An expansion of (20) near 171 = 0 
leads to 

which is markedly different from (17), especially for low values of E where the effect 
of the log singularity in (1  7) is more pronounced. 
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FIGURE 4. Experimental probability density functions of PI, P2, y1 and yz. 17, U ; ~ U , , ~ ;  
m, (ul+ul)-1%,t; 0, u;10,,; 0 ,  (U1+u,)-'0,,; , Gaussian. 

4. Experimental probability density functions of ul, and 6',t and discussion 
Velocity u1 and temperature 6' fluctuations were measured a t  a height of 4 m in 

the atmospheric surface layer over a ploughed surface a t  the Bungendore field site 
of the C.S.I.R.O. Division of Environmental Mechanics. The fetch was about 300 m 
in the prevailing wind direction. The mean velocity profile, measured with Cassella 
cup anemometers at heights of 0.5,1,2,4 and 8 m above ground, indicated a roughness 
length of about 1 mm. Fluctuations u1 and 6' were measured with a single hot wire 
and a cold wire respectively, both about 1 mm long, placed in a vertical direction. 
The distance between the parallel wires was approximately 1 mm.t 

For ul, a 5 mm diameter Wollaston wire was operated a t  an overheat ratio of 1.8 
by a nonlinearized DISA 55 M01 constant-temperature anemometer. The fluctuation 
6 was measured with a Pt/lO %Rh Wollaston 'cold' wire of 0-6 pm diameter, operated 
with a d.c. constant-current bridge a t  a current of 0.1 mA. This low value of heating 

t Details of both experimental site and conditions may be obtained in Antonia et al .  (1979). 
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current ensured that the velocity sensitivity of the cold wire was negligible for existing 
experimental conditions. The temperature sensitivity of the hot wire was negligible. 
Signals from the anemometers were passed through buck and gain units before 
recording on a four-channel Hewlett-Packard F M  tape recorder (model 39648) at a 
speed of 38-1 cm s-1. The tape was later played back in the laboratory and the 
fluctuating voltages were filtered prior to digitization on a PDP 11/20 computer. 
The cut-off ( - 3 dB) frequency of the filters was set equal to the Kolmogorov frequency 
fK ( =  ul/2nLK with a mean wind speed Ul = 6.1 m s-l and Kolmogorov microscale 
L K  of about 0.6 mm) while the sampling frequency was chosen equal to Zf,. 

Signals proportional to u ~ , ~  and O,t were obtained by numerical differentiation. 
Probability density functions of these signals are shown in figure 4 for a record of 
about 12 min duration. Also shown in the figure are the p.d.f.'s of signals proportional 
to (U, + ul)-l ul,t and (U, + ul)-l O,t. These latter quantities may be considered as 
rough approximations to ul,l and 0 respectively. The quantities U ~ l u ~ , ~ ,  (U, + U ~ ) - ~ U , , ~ ,  

U i l  O,t ,  (U, + ul)-l O,t are denoted by pl, Pz, y l ,  yz  respectively for ease of reference in 
this section. 

R.m.s. values of p2 and yz were found to be 16 % larger than the corresponding 
values of p1 and yl.  For the present data, uul/Ul = 0.21 while r.m.s. values of the 
components u2 and u3 were estimated from the experimental correlations (Bradley & 
Antonia 1978) 

uz,/c:, 21 0-021( -x/L)-f, 

U $ / c t 3  = 0*089+0*171( -z/L)-Q, 

where U, is the friction velocity ( =  0.26 m s-l) and L is the Monin-Obukhov length 
(z/L = - 0.50). For values of uJU1 and gu3/Ul equal to 0.24 and 0.07 respectively, 
the relation (e.g. Heskestad 1965) 

indicates that cap should be 8 yo lower than cal while (6) indicates that should be 
about 5 % smaller than cYl. Note that (22) follows from (5) assuming independence 
between ui and ui,*. 

The effect of turbulence intensity on r.m.s. values of Pz and yz  is in the opposite 
direction to that indicated by (6) and (22) when pZ and yz are identified with ul,l and 
0,1 respectively. It is consistent, however, with the alternative formulation 

a,t a,1 = --, 
01 

where a,t and v1 are assumed to be independent. The p.d.f. of a,l and its moments are 
then given bv 
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so that a turbulence level of 20 % means an increase of 16 and 74 % for 6 and 
over the 'uncorrected values' Tt/ UZ, and a@ U! respectively. When the correlation 
between a,t and v1 is included, a larger increase in relative toTt/U2, is expected 
since 

and physical considerations, similar to those that suggest that the presence of a large 
structure in the flow is mainly responsible for the non-zero skewness of 8,t, would 
indicate that ula:t is negative while 

The qualitative agreement between (24), (25 )  and the trend of the data in figure 4 
does not, of course, invalidate the earlier approach, as formulated by (9) and (lo), 
with assumed independence between a,, and vl. As experimental values of the moments 
of a,l are generated after dividing a,t by U, + ul, it seems reasonable that the experi- 
mental trend qualitatively follows the predictions of (24 )  and (25 ) .  Equations ( 2 2 )  

and (6) have been used, in the literature, to ' correct ' measured values of qt andFt 
respectively in order to obtain more meaningful estimates of the mean dissipation 
rates, assuming local isotropy, f o r G i  and @. These corrections differ from those of 
( 2 4 )  since the final expression for the correction is sensitive to the type of operation - 
multiplication or division of the independent vaiiables - that is performed. The correct 
choice of operation is not a priori obvious. As little is known about the quantity a,l, 
the experimentalist may tend to favour the division since quantities and (U, + ul)  
are experimentally readily measurable. On the other hand, formulations ( 4 )  and ( 5 )  
may have the advantage that all three components of Uj are readily taken into 
account, provided that Heskestad's simplifying assumptions are made. Formulation 
(23 )  could, in principle, be modified to include u2 and u3, a t  least when 01 = 8. In 
practice, while 8,2 and 8,3 can be obtained relatively easily, the simultaneous measure- 
ments of u2 and u3 at effectively the same location where 8,2 and 8,3 are obtained 
would prove rather difficult. Before a definitive recommendation can be made on 
whether formulation (23) should replace formulation (9) or (lo),  an investigation of 
the assumptions of independence and, perhaps of less importance, of local isotropy 
would seem necessary. It has previously been pointed out that the existence of an 
organized large structure in the flow would result, probably irrespectively of R,, in 
non-zero values of and U ~ C C : ~ .  Statistics of 'the spatial derivatives of the tem- 
perature fluctuation may need to  be interpreted in the context of the organized motion 
(e.g. Sreenivasan, Antonia & Danh 1977; Antonia & Van Atta 1980). 

The shapes of p,, and pPz in figure 4 are consistent with the expected positive and 
negative skewness of PI and P2 respectively. The skewness of PI is 0.50, smaller than 

- - 
is positive. 

- - 
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Order of 
moment U;lu1,, P1 (Ul+u,)-lul,l f /Iz U;lB,, z y1 (U,+u,)-lO,, z 7 2  

3 0.50 0.54 - 0.67 - 0.85 
4 13.3 14.2 72.9 83.0 
5 24.5 29.2 - 368 - 616 
6 713 880 2.5 x 104 3.55 x 104 

- 6.26 x 105 7 2.04 x 103 3.02 x 103 
8.13 x 104 1.17 x lo6 1.68 x 1 0 7  2.86 x 107 

- 3.26 x 105 
8 

TABLE 1. Normalized moments of measured velocity and temperature derivatives. 

the values obtained in the atmosphere (e.g. Champagne 1978) a t  Reynolds numbers 
comparable to the present Reynolds number (RA 2: 10730). The skewness of y1 is 
- 0.85, in general agreement with the nearly constant (independent of RA) value 
found in the literature. Normalized moments, of order 3 to 8, of pl, /I2, y l ,  yz are shown 
in table 1 .  Moments of / I z  and y 2  are larger than those of /I1 and y l ,  the difference being 
more pronounced for odd-order moments than for even-order moments. This difference 
between the normalized moments is, as noted previously, not consistent with the 
analysis of $2 .  Equations (8) and (6) suggest that the flatness factor of 6,1 should be 
approximately 4 % lower than that O,t. When components u2 and u3 are neglected, 
the flatness factor of 0,1 should be 16 % smaller than that of O,t. 

It seems useful to compare the present experimental data with those of Kholmyan- 
skiy (1972) who measured statistics of Pl and p2i a t  a height of 13.5 m above a steppe. 
Except for the difference in the nature of the surface, experimental conditions 
( z / L  E -0.51, U, = 0.29 m s-l) of Kholmyanskiy are not dissimilar to the present 
ones. The r.m.s. value of p2 was larger than that of B1, in quantitative agreement 
with the present result, but the difference (35 yo) obtained by Kholmyanskiy seems 
to be unusually large. Skewness and flatness factors of p2 were appreciably smaller, 
by about 15 and 45 yo respectively, than those of /I1. This difference is in the opposite 
direction and of larger magnitude than that obtained for the present data. As p.d.f.'s 
of p1 and pz are not given by Kholmyanskiy, it is difficult to ascertain the accuracy 
of the normalized moments given in his table. 

5. Summary of conclusions 
Equations for velocity and temperature fluctuations in a turbulent flow at suffi- 

ciently large RA only reduce to an expression of Taylor's hypothesis when certain 
oversimplifying assumptions are made. These assumptions appear to be more reason- 
able in the case of temperature than in the case of velocity as the pressure fluctuation 
does not appear in the equation for the temperature fluctuation. The tails of prob- 
ability density functions of ul,t or e,*, that are calculated by assuming that the con- 
vection velocity Ul+ul is Gaussian and that the spatial derivatives and 0,1 are 
Gaussian, are increasingly affected by the turbulence intensity level. A similar effect 
is observed when the convect& velocity is assumed equal to (UZ, + u; + ui + u$, 
where the fluctuations ui are assumed Gaussian. Normalized probability density 

t Pa was obtained by analogue differentiation of Inv,. Records of 5 min duration were used 
for atatistical analysis. 
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functions and associated moments of temporal derivatives of velocity and temperature 
fluctuations measured in the atmospheric surface layer have been compared with 
those of spatial derivatives obtained by dividing the temporal derivatives by the 
instantaneous fluctuating velocity Ul + ul. The normalized moments of the spatial 
derivatives are larger than those inferred from Taylor’s hypothesis, the increase being 
more significant for odd-order moments than for even-order moments. Both direction 
and magnitude of this effect are different to those derived from the simplified equations 
(4) and (5) but are consistent with those derived from equation (23). Statistics of a,l, 
obtained by dividing a,t by Ul+ul ,  may be more attractive, from an experimental 
point of view, than those obtained by Heskestad and others. In particular, the 
continued application of corrections, provided by equations (6) and (22), does not 
seem fully justifiable. Further work is needed on the assumptions of local isotropy and 
of independence between small and large scales of motion. 

The authors are grateful to Dr E. F. Bradley for the use of the Bungendore field 
site. They would also like to thank Dr S. Rajagopalan and Mr D. Phong-anant for 
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